
Owner: Ayoub Majjid School: EMSI
✦ 1 / 17 ✦

🔗 majjid.com

🧠 K-Nearest Neighbors (KNN) Classification Project
Author: Ayoub Majjid
Email: ayoub@majjid.com
Portfolio: majjid.com
📂 Repository: Repository:
https://github.com/ayoubmajid67/learn/tree/main/ai_data/projects/KNN_Project

🎯 Project Goal

This project predicts whether a user will purchase a product based on demographic data such as:

Age
Estimated Salary
Gender

We use the K-Nearest Neighbors (KNN) algorithm — a simple but powerful machine learning model
that classifies a new point based on its closest neighbors in the training data.

🏗 Notebook Outline

This notebook demonstrates how to:

1. Load and explore data
2. Preprocess data for ML models
3. Train the KNN classifier
4. Evaluate model performance
5. Visualize decision boundaries
6. Interpret the results visually and statistically

🧩 Step 0: Understanding the Idea Behind the KNN Algorithm
Before we start coding, let’s understand what KNN is and how it works.

🧠 What is KNN?

K-Nearest Neighbors (KNN) is one of the simplest supervised machine learning algorithms used for
classification and regression.

“Supervised” means it learns from labeled examples — data where we already know the correct
answer (for example, whether a user bought a product or not).
KNN doesn’t build an equation or internal model. Instead, it stores all training examples and
classifies new data by comparing it to those examples.

It’s often described as “learning by analogy.”

https://majjid.com/
mailto:ayoub@majjid.com
https://majjid.com/
https://github.com/ayoubmajid67/learn/tree/main/ai_data/projects/KNN_Project

Owner: Ayoub Majjid School: EMSI
✦ 2 / 17 ✦

🔗 majjid.com

📏 How It Works – Step by Step

Imagine you have a dataset of users with:

Age
Estimated Salary
Whether they purchased a product (Yes/No)

Now, suppose we meet a new user and want to predict if they will buy the product.

Here’s what KNN does:

� Compute Distances:

� Compute Distances:

Measure how “close” the new user is to every user in the training set.
The most common distance metric is the Euclidean distance:

[
d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + ...}

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 3 / 17 ✦

🔗 majjid.com

]

This tells us how far points are in multi-dimensional space.

� Find the K Nearest Neighbors:

Sort all training samples by distance from the new user.
Pick the K closest ones (for example, the 5 nearest points).

� Voting:

Each neighbor “votes” for its class (Purchased = 1, Not Purchased = 0).
The class with the most votes becomes the prediction.

Example:

K = 5 → [1, 0, 1, 1, 0]
Votes → Purchased = 3, Not Purchased = 2 → Predict Purchased (1)

⚙ Choosing the Right Value of K

Small K → very sensitive to noise (too local, may overfit).
Large K → smoother, but may ignore local patterns (underfit).
Typically, we test several values of K and pick the one with the best validation accuracy.

🎯 Why Does KNN Work Well?

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 4 / 17 ✦

🔗 majjid.com

KNN works best when:

The data has clear clusters or groups, like “buyers” and “non-buyers.”
The features are scaled, so no feature dominates distance calculation.
The relationship between inputs and output is non-linear — KNN doesn’t assume any
mathematical formula, it adapts to the data shape.

In our case:

Users with similar ages and incomes tend to behave similarly.
So KNN can easily find patterns based on proximity in feature space.

🧩 KNN in One Sentence:

“To predict something new, look at your closest examples and do what most of them do.”

Now that you understand the concept, let’s move on to data loading and preprocessing so we can apply
this algorithm in practice.

🏗 Step 0.5: Understanding the Project Structure

KNN_Project/
│
├── data/
│ └── Social_Network_Ads.csv # Dataset used for training and testing
│
├── docs/ # Documentation files
│ ├── api_documentation.pdf # API documentation (PDF)
│ ├── project_overview.md # General project explanation
│ └── KNN_SIG_MODEL.postman_collection.json # Postman collection for testing
API
│
├── models/
│ └── knn_model.pkl # Saved trained KNN model for reuse
│
├── notebooks/
│ └── knn_classification.ipynb # Main Jupyter Notebook
│
├── src/ # Source code directory containing
reusable modules
│ ├── __init__.py # Marks src as a Python package
│ ├── data_loader.py # Loads and returns the dataset
│ ├── preprocessing.py # Encodes, scales, and splits the data
│ ├── model_train.py # Trains and saves the KNN model
│ ├── evaluate.py # Evaluates the model (accuracy,
confusion matrix)
│ └── visualize.py # Plots decision boundaries and data
distributions

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 5 / 17 ✦

🔗 majjid.com

│
├── api/ # Flask API application
│ ├── __init__.py # Initialize the Flask app
│ └── routes/ # Endpoints of the API
│ └── api_bp.py # Blueprint with all endpoints
│
├── main_train.py # Script to train the model outside
notebook
├── main.py # Start the Flask API server
├── requirements.txt # Dependencies list (e.g., pandas,
sklearn, flask)
└── README.md # Project overview, usage
instructions, setup guide

🔍 Explanation of Each Component

data/ → Stores all raw or processed datasets used by the model.
models/ → Keeps trained model files so they can be reused in APIs or other applications.
src/ → Contains all modularized Python scripts for each process: loading, preprocessing, training,
evaluation, and visualization.
notebooks/ → Interactive notebooks used for experimentation and documentation.
requirements.txt → Lists all Python dependencies to replicate the environment easily.

This modular design follows the principle of separation of concerns, ensuring that each part of the
system has a single responsibility.

Step-by-Step Guide to Run the Project (Using venv)

1. Clone the repository:

git clone https://github.com/ayoubmajid67/learn.git
cd projects/KNN_Project

2. Create a virtual environment:

python -m venv venv

3. Activate the virtual environment:

Windows (cmd):

venv\Scripts\activate

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 6 / 17 ✦

🔗 majjid.com

Windows (PowerShell):

venv\Scripts\Activate.ps1

Linux / MacOS:

source venv/bin/activate

4. Install dependencies:

pip install -r requirements.txt

5. Train the model (optional if not already trained):

python main_train.py

Reads the dataset, preprocesses it, trains the KNN model, and saves it to models/knn_model.pkl.

6. Start the Flask API server:

python main.py

The API will run at http://127.0.0.1:5000.

7. Test the API:

Check API documentation: Open docs/api_documentation.pdf.

Postman testing: Import docs/KNN_SIG_MODEL.postman_collection.json into Postman and
run the endpoints directly.

Example request :

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 7 / 17 ✦

🔗 majjid.com

✅ Tips / Notes

Keep your virtual environment activated whenever you work on the project.
Store all new documentation or API updates in the docs/ folder.
The Postman collection is a ready-to-use way to test all endpoints without writing additional code.

⚙ Step 1: Import Dependencies and Setup
We’ll import the modules from our /src package to keep our project modular and clean.

import sys
import os

Optional: run once to include project root in sys.path
"""
project_root = os.path.abspath(os.path.join(os.getcwd(), '..'))
if project_root not in sys.path:
 sys.path.append(project_root)
"""

from src.model_train import train_knn, save_model
from src.evaluate import evaluate_model
from src.data_loader import load_data
from src.preprocessing import preprocess_data
from src.visualize import plot_decision_boundary_train_test

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 8 / 17 ✦

🔗 majjid.com

📊 Step 2: Load and Explore the Dataset
We start by loading our dataset — Social_Network_Ads.csv, which contains information about users and
whether they purchased a product after seeing an ad.

def load_data(path='data/Social_Network_Ads.csv'):
 return pd.read_csv(path)

df = load_data("../data/Social_Network_Ads.csv")
df.head()
df.info()

🔍 Observations

Features: Age, Gender, EstimatedSalary
Target: Purchased (1 = yes, 0 = no)
We will later convert categorical values like “Male/Female” into numeric codes.

🧩 Step 3: Data Preprocessing
Machine Learning models can’t understand text or unscaled values — they work best with numerical,
normalized data.

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler

def preprocess_data(df):
 # Encode gender (text → numeric)
 df['Gender'] = LabelEncoder().fit_transform(df['Gender'].astype(str))

 # Split into features and target
 X = df[['Age', 'EstimatedSalary', 'Gender']].values
 y = df['Purchased'].values

 # Train-test split (75% training, 25% testing)
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random_state=0)

 # Scale features for KNN (important!)
 sc = StandardScaler()
 X_train = sc.fit_transform(X_train)
 X_test = sc.transform(X_test)

 return X_train, X_test, y_train, y_test

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 9 / 17 ✦

🔗 majjid.com

X_train, X_test, y_train, y_test = preprocess_data(df)
print(f"Training set: {X_train.shape}, Test set: {X_test.shape}")

💡 Why Scaling?

KNN uses distance to decide neighbors.
Without scaling, a feature like salary (which can be in thousands) would dominate over age.

📈 Step 4: Visualize the Data
Before training, let’s visualize how Age and Estimated Salary relate to purchasing decisions.

sns.scatterplot(data=df, x='Age', y='EstimatedSalary', hue='Purchased',
palette='coolwarm')
plt.title("Age vs. Estimated Salary by Purchase Decision")
plt.show()

🧠 Interpretation:

Clusters form naturally: younger users with lower income rarely purchase.
Older or higher-salary users are more likely to purchase.
This gives intuition for why KNN (a distance-based algorithm) works well here.

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 10 / 17 ✦

🔗 majjid.com

🧠 Step 5: Train the KNN Model
KNN works by looking at the K nearest neighbors of a point and letting them “vote” on its class.

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
import numpy as np
import pickle

def train_knn(X_train, y_train, n_neighbors=5, cv_folds=5, verbose=True):
 """
 Train a K-Nearest Neighbors classifier and perform cross-validation.

 Parameters:
 - X_train: Training features
 - y_train: Training labels
 - n_neighbors: Number of neighbors for KNN
 - cv_folds: Number of folds for cross-validation
 - verbose: Whether to print cross-validation results

 Returns:
 - classifier: Trained KNN model
 - cv_scores: Array of cross-validation scores
 - mean_cv_score: Average accuracy across folds
 """

 # Initialize KNN classifier
 classifier = KNeighborsClassifier(n_neighbors=n_neighbors)

 # Perform cross-validation
 cv_scores = cross_val_score(classifier, X_train, y_train, cv=cv_folds,
scoring='accuracy')
 mean_cv_score = np.mean(cv_scores)

 if verbose:
 print(f"Cross-validation scores ({cv_folds} folds): {cv_scores}")
 print(f"Average CV accuracy: {mean_cv_score:.2f}")

 # Train KNN on full training set
 classifier.fit(X_train, y_train)

 return classifier, cv_scores, mean_cv_score

⚙ Why Use Cross-Validation?

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 11 / 17 ✦

🔗 majjid.com

Cross-validation is a method to evaluate model performance more reliably.

Instead of using a single train-test split:

We split the data multiple times into training and validation sets.
Train the model on each split and record the performance.
Calculate the average performance → more robust and less biased estimate of accuracy.

Benefits:

Reduces risk of overfitting to a single train-test split
Gives insight into model stability
Helps choose the best K for KNN

model = train_knn(X_train, y_train)

💬 Example:

If (K = 5) and among the 5 nearest users, 3 purchased and 2 did not → the model predicts Purchased =
1.

💾 Step 6: Save the Trained Model
We save the trained KNN model using Python’s pickle for reuse in APIs or apps.

save_model(model, '../models/knn_model.pkl')

🧪 Step 7: Evaluate the Model

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 12 / 17 ✦

🔗 majjid.com

1. Visualize accuracy for each fold in cross-validation.

from src.model_train import train_knn
from src.visualize import plot_cv_folds

Train KNN with cross-validation
model, cv_scores, mean_score = train_knn(X_train, y_train, n_neighbors=5,
cv_folds=5)

Visualize fold accuracies
plot_cv_folds(cv_scores, title="KNN 5-Fold Cross-Validation")

cross validation :interpretation

Fold Accuracy

1 0.8833

2 0.8833

3 0.8500

4 0.9167

5 0.9667

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 13 / 17 ✦

🔗 majjid.com

Mean CV Accuracy: 0.90

🔹 Step 1: Examine Each Fold

Folds 1 & 2 (0.8833): Very similar accuracy → model performs consistently on these splits.
Fold 3 (0.85): Slight drop → some harder-to-classify samples present in this fold.
Fold 4 (0.9167) & Fold 5 (0.9667): Excellent performance → these splits were easier for the model.

🔹 Step 2: Overall Model Assessment

Average accuracy = 0.90 → The model is strong and generalizes well across unseen data.

Variance across folds:

Maximum: 0.9667
Minimum: 0.85
Range = 0.1167 → small variability, indicating stable performance.

🔹 Step 3: Insights

1. Consistent performance across most folds → KNN is capturing the underlying patterns.
2. Fold 3 slightly lower (0.85) → could be due to a few borderline samples or overlap in feature

space.
3. High folds (0.9167 & 0.9667) → confirms that when clusters are well-separated, KNN performs

extremely well.
4. Decision boundaries can visually show why some points (Fold 3) are harder to classify —

overlapping regions in Age/Salary space.

🔹 Step 4: Summary Interpretation

The KNN model achieves a solid average accuracy of 90% with low variability across folds,
demonstrating good generalization while highlighting that a few samples in overlapping feature
regions may be misclassified.

2. evaluate accuracy and confusion matrix.
We test our model on unseen data and calculate performance metrics.

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 14 / 17 ✦

🔗 majjid.com

acc, cm = evaluate_model(model, X_test, y_test)
print(f"Accuracy: {acc:.2f}")
print("Confusion Matrix:\n", cm)

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title("Confusion Matrix Heatmap")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 15 / 17 ✦

🔗 majjid.com

📊 Interpreting the Confusion Matrix

From your documentation:

[[64 4]
 [3 29]]

Term Meaning Count

TN (True Negative) Correctly predicted non-buyers 64

FP (False Positive) Incorrectly predicted buyers 4

FN (False Negative) Missed actual buyers 3

TP (True Positive) Correctly predicted buyers 29

Accuracy: 93%
Precision: 88%
Recall: 91%
F1-Score: 89%

✅ The model performs well — minimal misclassifications, strong generalization.

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 16 / 17 ✦

🔗 majjid.com

🎨 Step 8: Visualize Decision Boundaries
Now, let’s see how the model makes its decisions visually.

plot_decision_boundary_train_test(model, X_train, y_train, X_test, y_test)

🧭 How It Works (from your visualization doc):

1. Meshgrid Creation – a grid of possible (Age, Salary) pairs is generated.

2. Model Prediction – KNN predicts each point as “buy” or “not buy.”

3. Color Regions:

🟥 Red: Model predicts “Not Purchased (0)”
🟩 Green: Model predicts “Purchased (1)”

4. Data Points:

Circles → Training set
Squares → Test set

https://majjid.com/

Owner: Ayoub Majjid School: EMSI
✦ 17 / 17 ✦

🔗 majjid.com

🧠 Graph Insights

Green and red zones show decision boundaries created by KNN.
Overlapping regions represent uncertain areas.
Misclassified points appear in the “wrong” color zone.
The model captures complex shapes — a major strength of KNN.

✅ Step 9: Conclusion
KNN effectively distinguishes buyers from non-buyers based on demographic data.
Accuracy: 93% with balanced precision and recall.
Visualization reveals how KNN adapts to nonlinear patterns.
Model saved as models/knn_model.pkl for reuse.

🌐 Author Information
� Author: Ayoub Majjid
📧 Email: ayoub@majjid.com
🌍 Portfolio: majjid.com
📂 Repository: Repository:
https://github.com/ayoubmajid67/learn/tree/main/ai_data/projects/KNN_Project

https://majjid.com/
mailto:ayoub@majjid.com
https://majjid.com/
https://github.com/ayoubmajid67/learn/tree/main/ai_data/projects/KNN_Project

